Quantum dynamical semigroups generated by noncommutative unbounded elliptic operators

نویسندگان

  • Changsoo Bahn
  • Chul Ki Ko
  • Yong Moon Park
چکیده

We study quantum dynamical semigroups generated by noncommutative unbounded elliptic operators which can be written as Lindblad type unbounded generators. Under appropriate conditions, we first construct the minimal quantum dynamical semigroups for the generators and then use Chebotarev and Fagnola’s sufficient conditions for conservativity to show that the semigroups are conservative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of additive functional equation on discrete quantum semigroups

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

متن کامل

3 v 1 1 9 D ec 1 99 5 NONCOMMUTATIVE FLOWS I : DYNAMICAL INVARIANTS

We show that a noncommutative dynamical system of the type that occurs in quantum theory can often be associated with a dynamical principle; that is, an infinitesimal structure that completely determines the dynamics. The nature of these dynamical principles is similar to that of the second order differential equations of classical mechanics, in that one can locate a space of momentum operators...

متن کامل

Covariant Quantum Dynamical Semigroups: Unbounded Generators

A survey of probabilistic approaches to quantum dynamical semigroups with unbounded generators is given. An emphasis is made upon recent advances in the structural theory of covariant Markovian master equations. As an example, a complete characterizations of the Galilean covariant irreversible quantum Markovian evolutions is given in terms of the corresponding quantum master and Langevin equati...

متن کامل

97 Covariant Quantum Dynamical Semigroups : Unbounded Generators

A survey of probabilistic approaches to quantum dynamical semigroups with unbounded generators is given. An emphasis is made upon recent advances in the structural theory of covariant Markovian master equations. As an example, a complete characterizations of the Galilean covariant irreversible quantum Markovian evolutions is given in terms of the corresponding quantum master and Langevin equati...

متن کامل

Dilation of a class of quantum dynamical semigroups with unbounded generator on UHF algebras

Evans-Hudson flows are constructed for a class of quantum dynamical semigroups with unbounded generator on UHF algebras, which appeared in [6]. It is shown that these flows are unital and covariant. Ergodicity of the flows for the semigroups associated with partial states is also discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005